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Abstract: The title reaction conducted in THF at 23 °C and under reflux furnishes l,3-dimethyl-9-
perfluoropropylacridine (8) and l,3-dimethyl-9-[(£)-l-perfluoropropenyl]acridine (5), respectively. 

Recently, we have reported synthesis of perfluoroalkyltriarylmethanes (molecular propellers) such as 4 by the 

reaction of 2-perfluoroalkylanilines with phenylmagnesium bromide.1 The mechanistic pathway, shown for 4, involves 

elimination of fluoride from anion derived from 1 followed by addition of PhMgBr to the resultant intermediate product 

2 to generate an adduct 3. Compound 4 is produced in a similar elimination-addition reaction with 3. 

In an attempt to synthesize a triarylmethane that would be more sterically congested than 4, the substrate 1 (3 

mmol) was allowed to react with 2-mesitylmagnesium bromide (10 mmol) in anhydrous THF (50 mL). The reactions 

were conducted at 23 °C and under reflux conditions. For the 23 °C reaction the GC-MS analysis showed the absence 

of 1 after 24 h, and under the reflux conditions the reaction was completed after 6 h. A single, albeit different, major 

product was observed in each case. To our surprise, however, none of the mass spectra, including those for a number of 
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Following standard workup1 and chromatography on silica gel (hexanes/ether, 4:1) the product of the reaction 

at 23 °C was identified as l,3-dimethyl-9-perfluoropropylacridine [8, yield 30%, mp 90-93 °C (from hexanes)]. A 

similar chromatographic separation of the mixture obtained under reflux conditions gave l,3-dimethyl-9[(£')-l-

perfluoropropenyl]acridine [5, yield 65%, mp 85-87 °C], Compounds 5 and 8 gave satisfactory results of elemental 

analysis and were characterized2 by MS, 'H NMR and 19F NMR. In particular, their 'H NMR spectra are similar as 

expected for a similarly substituted acridine system. In the 19F NMR spectrum of 5 the large coupling constant of 140 

Hz between fluorine atoms Fl and F2 of the perfluoropropenyl substituent is indicative of Zs-stereochemistry.3 

It is suggested that the formation of either acridine 5 or 8 involves the intermediary of the same 

dihydroacridine derivative 7 that is generated by intramolecular SN2' cyclization of 3 (R = Me) or electrocyclization of 

a mesityl-substituted analog of 2 (not shown) derived from 3. This unusual intramolecular reaction can be explained in 

terms of greatly increased steric congestion in 3 (R = Me) in comparison to that of 3 (R = H). Aromatization of 7 to 

give 8 requires a formal elimination of MeMgBr. This process may take place within aggregated higher-order 

structures of 7 that are expected to be present at low temperatures. On the other hand, an increase in temperature causes 

a decrease in aggregation of organometallic compounds. This phenomenon may be responsible for the elimination of 

fluoride ion and a C4a-methyl group from 7 by a nucleophilic attack of an external nucleophile at the C4a-methyl group 

to generate 6. The intermediate product 6 is the suggested direct precursor to 5. Additional studies of these novel 

transformations by using a variety of aryl Grignard reagents are in progress. 
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